NUWEST " -
Jan. 18, 2024 III i

o0

PER ORDER OF FASTCODE

Writing Fast Task-

Parallel Code Using
OpenCilk

Tao B. Schardl

Based on slides and materials
© 2008-2024 by the FastCode organization from MIT 6.106 lecturers.

MIT 6.106: Software Performance Engineering

- Upper-level undergraduate
1 -semester class

- ~140 students per year
- Taught using C and OpenCilk

programming, computer architecture w

* Prerequisites: algorithms,

PER ORDER OF 6.106

Lecture topics include: |wrins

Efficient
Programs

- Bentley rules |l = Measurement and timing
« Bit hacks ——=1 « Task parallelism
- Assembly language and « Nondeterministic

computer architecture parallel programming
- Cache-efficient algorithms < And more!

© 2008-2024 by the FastCode organization

6.106 Projects

In 6.106, students primarily work on 4
open-ended projects.

- Students are given a correct, but
slow, C program to solve a problem.

« Students are charged with making
that program run as fast as possible
on a shared-memory multicore.

Simulation and

+ Some projects myol_ve o_nIy serial rendering of
performance Opt|m|zat|0ns. colliding spheres

« Others involve parallel
programming using OpenCilk. Open

DCilk

Example project:

© 2008-2024 by the FastCode organization

inte4_t fib(int64_t n) {
if (n < 2)
return n;
int64_t x, y;
cilk scope {

X

y
}

return x + vy,

¥ Cilk source ’

cilk _spawn fib(n-1);
fib(n-2);

OpenCilk runtime-
system library

libopencilk.so J

Program
input

Parallel
performance

© 2008-2024 by the FastCode organization 4

Parallel Testing

int64_t fib(int64_t n) {

}

Parallel

tests

© 2008-2024 by the FastCode organization

regression | < @

if (n < 2)
return n;
inté4 t x, y;
cilk scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);
}

return (x + y);

Cilk source

¥

penCilk compile

(0]
with Cilksan

L/

I 2

Potential race

bug report

Binary J

Cilksan finds and
localizes race bugs.

o If an ostensibly

deterministic Cilk
program could
possibly behave
nondeterministically
on a given input,
Cilksan guarantees to
report and localize
the offending race.

Cilksan employs a
regression-test
methodology, where
the programmer
provides test inputs.

Scalability Analysis

. TR e Cilkscale analyzes
i A how well your
ikfzf{% won; | program will scale
) to larger machines.

return (x + y);

} Cilk source 4

* 20 sample_qgsort speedup

® Observed

35 —— Perfect linear speedup
[O penCilk compi Ier} — b

with Cilkscale

' 25 A
3
20 4

Binary J .
*] OQ@QQQOOOOOOOOQQQQ.Q‘
51 o°°
Program - I @ @ Ty @ °0 5 1o 1'5Num§;grkersz'5 30 35 40
input . _

Scalability
report

© 2008-2024 by the FastCode organization

LECTURE 1 CASE STUDY

© 2008-2024 by the FastCode organization

Square-Matrix Multiplication

- N
Ci1 G2 = Gyp
Co1 Co2 = Con|
LCnt Ch2 o Gl

C

\

.
dip di2 - dyp
dp1 dp2 d2p

\anl dpny " a'nn/

A

[by byy = by
b,y byy -+ by,

" bn] I:)n2 I:)nn/

B

-

| = Z djk bkj

Cij

kK =1

~

/

Assume for simplicity that n = 2k,

© 2008-2024 by the FastCode organization

AWS c4.8xlarge Machine Specs

Feature Specification
Microarchitecture Haswell (Intel Xeon E5-2666 v3)

Clock frequency 2.9 GHz

Processor chips 2
Processing cores 9 per processor chip
Hyperthreading 2 way

8 double-precision operations, including

Floating-point unit fused-multiply-add, per core per cycle

Cache-line size 64 B

L1-icache 32 KB private 8-way set associative
L1-dcache 32 KB private 8-way set associative
L2-cache 256 KB private 8-way set associative
L 3-cache (LLC) 25 MB shared 20-way set associative
DRAM 60 GB

Peak = (2.9 X 10°) x2 x 9 x 16 = 836 GFLOPS

© 2008-2024 by the FastCode organization

Version 1: Nested Loops in Python

import sys, random
from time import *

n = 4096

A

[[random.random()
for row in xrange(n)]
for col in xrange(n)]

B = [[random.random()
for row in xrange(n)]
for col in xrange(n)]
C = [[@ for row in xrange(n)]

for col in xrange(n)]

start = time()
for i in xrange(n):
for j in xrange(n):
for k in xrange(n):
C LR (8] Sl [SBisigllo
end = time()

print '%0.6f' % (end - start)

© 2008-2024 by the FastCode organization

Running time:

~ 6 microseconds?
~ 6 milliseconds?
~ 6 seconds?

~ 6 hours?

~ 6 days?

Version 1: Nested Loops in Python

import sys, random
from time import *

n = 4096

A

[[random.random()
for row in xrange(n)]
for col in xrange(n)]

B = [[random.random()
for row in xrange(n)]
for col in xrange(n)]
C = [[@ for row in xrange(n)]

for col in xrange(n)]

start = time()
for i in xrange(n):
for j in xrange(n):
for k in xrange(n):
C LR (8] Sl [SBisigllo
end = time()

print '%0.6f' % (end - start)

© 2008-2024 by the FastCode organization

Running time:
= 21042 seconds
~ 6 hours

Is this fast?

How fast can we
make this code
through software
performance
engineering?

After Optimizations

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
7 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646
8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486
9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677
10 Intel MKL 0.41 0.97 51,497 335.217 40.098

Our Version 9 is competitive with Intel’s professionally

engineered Math Kernel Library!

© 2008-2024 by the FastCode organization

© 2008-2024 by the FastCode organization

PER ORDER OF FASTCODE

/3

© 2008-2024 by the FastCode organization

Follow Along Using SpeedCode

SpeedCode provides an online platform to practice

programming that focuses on software performance

engineering.

- SpeedCode problems are small programming exercises
that require performance engineering to solve.

- SpeedCode provides users with an environment that
enables software performance engineering, including

« Access to performance-engineering tools, and
« Support for parallel programming using OpenCilk.

Available from http://speedcode.org/
Today, we’ll use the “Matrix multiplication” problem.

@& 7 SpeedCode’s development is
= being led by Dr. Tim Kaler.

http://speedcode.org/

for "(@nt 9 =00;" i < nEe+i)
for (int.j = 05 j < n; ++j) {
for (int k = @; k < n; ++k) {
C[i][3] += A[i][k] * B[K][J];

}
}

© 2008-2024 by the FastCode organization

Using the Clang/LLVM 5.0

compiler

Running time = 1,156 seconds
~ 19 minutes,

or about 2x faster than Java and

about 18x faster than Python.

for o@nty, 1%=, .05 7 X" n; 1) {
f@r (B e 0T < I S T
HO R UTTL alMe=S0E e % TN Fli =L
CLi][3] += A[i][k] * B[k][]];

15

We can change the order of the loops in this program
without affecting its correctness.

RO ((Lmile' 1y, =905 17 el +¥1)
0 e C ITHE- =00 G < N5 -5l &
for (int k = 0; k < n; ++k) {
C[i][J] += A[i][k] * B[k][]J];

© 2008-2024 by the FastCode organization 16

Loop Order

We can change the order of the loops in this program
without affecting its correctness.

FOr™ (lmt i, =% ; 1. e’ +¥1) |
for (int k = @; k < n; ++k) {
EOR S@iite Y=g Okt SRR Syt L e 1
: C[i][J] += A[i][k] * B[k][]J];
}
}

Does the order of loops matter for performance?

© 2008-2024 by the FastCode organization

Loop order Running
(outer to inner) time (s)
i, j, k 1155.77
i, K, j 177.68
i, i, k 1080.61
j, k, i 3056.63
K, i, j 179.21
K, j, i 3032.82

© 2008-2024 by the FastCode organization

Loop order affects
running time by a
factor of 18!

What’s going on?

18

Hardware Caches

Each processor reads and writes main memory in
contiguous blocks, called cache /lines.

e Previously accessed cache lines are stored in a smaller
memory, called a cache, that sits near the processor.

o Cache hits — accesses to data in cache — are fast.
o Cache misses — accesses to data not in cache — are

slow.
memory
processor v cache
— -
||
M/le(— B—|
cache lines

© 2008-2024 by the FastCode organization

We can measure the effect of different access patterns
using the Cachegrind cache simulator:

$ valgrind --tool=cachegrind ./mm

Loop order Running Last-level-cache
(outer to inner) time (s) miss rate
i, j, k 1155.77 7.7%
i, K,] 177.68 1.0%
j, i, k 1080.61 8.6%
j, k, i 3056.63 15.4%
K, i,] 179.21 1.0%
k, j, i 3032.82 15.4%

© 2008-2024 by the FastCode organization 20

Running Relative Absolute Percent
Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
© 2008-2024 by the FastCode organization 21

Compiler Optimization

Clang provides a collection of optimization switches.
You can specify a switch to the compiler to ask it to

optimize.

Opt. level | Meaning Time (s)
-00 Do not optimize 177.54
-01 Optimize 66.24
-02 Optimize even more 54.63
-03 Optimize yet more 55.58

Clang also supports optimization levels for special
purposes, such as -0s, which aims to limit code size,
and -0g, for debugging purposes.

© 2008-2024 by the FastCode organization

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, we can
achieve 0.3% of the peak performance of the machine.

Let’s try this on
SpeedCode!

© 2008-2024 by the FastCode organization 23

Version 5: Optimization Flags

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, we can
achieve 0.3% of the peak performance of the machine.

Where can we get more performance?

© 2008-2024 by the FastCode organization

Multicore Parallelism

Intel Haswell E5:
9 cores per chip

gRP il s aill M xt
HMIIETETENE

1 sisem Ly
s sieRe

The AWS test
machine has 2 of
. these chips.

OFSESEAN N |

i :
-

v

’
«

-
.
¥y
.
4

MIIEEIEEE ',
BoseRIRE |

4 ~
e s]
tanli-

mESREEEE - X
EEEEEE RN

We’re running on just 1 of the 18 parallel-processing
cores on this system. Let’s use them all!

© 2008-2024 by the FastCode organization

Parallel Loops

Let’s use OpenCilk to parallelize this simple code.

cilk for (int i = ©; i < n; ++i) ~ Allows all loop N
o (TIE Y G=RE S "< RS ks) : :
P L Tl 6 SV W iy |terat.|ons to
C[i][j] += A[i]l[k] * B[kI[]1; _execute in paraIIeI.)

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

[Almost 18x speedup on 18 cores!J

© 2008-2024 by the FastCode organization

OpenCilk Scheduling

e Cilk allows the
programmer to express
logical parallelism in an
application, in a
processor-oblivious
fashion.

e The Cilk scheduler maps
the executing program
onto the processor cores
dynamically at runtime.

e Cilk’s work-stealing
scheduling algorithm is
provably efficient.

© 2008-2024 by the FastCode organization

cilk for (int i = 0; 1 < n; ++i)
for (int k = @0; k < n; ++k)
LORMCINT NS G gLk n o M55)
8y, 1 A b T A RS T

7

Memory /O

¢ Network >

Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

called 1 ['
called called
| called
called
Call!

® ® & ©

© 2008-2024 by the FastCode organization

Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

called
called called
called ‘ called

© 2008-2024 by the FastCode organization

Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

called |
called called
called | called 1
| ca|led |
Steal! |led

& ©

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Dy

© 2008-2024 by the FastCode organization

Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

called spawned
called called
called called4
d called J
called

When a worker runs out of work, it steals 0@

from the top of a random victim’s deque.

© 2008-2024 by the FastCode organization

Work-Stealing Bounds

The performance of a Cilk program depends on
two measures:

« Work , T, — total executed instructions

« Span, T, — length of a longest path of serial
dependencies

Theorem [BL94]. OpenCilk’s randomized work-
stealing scheduler achieves expected running time

Tp = T,/P + O(T,)
on P processors.

Tpis within a constant
factor of optimal.

© 2008-2024 by the FastCode organization

Pseudoproof of Work-Stealing Bounds

Theorem [BL94]. OpenCilk’s randomized work-
stealing scheduler achieves expected running time

Tp = T,/P + O(T,)
on P processors.

Pseudoproof. A processor is either working or
stealing. The total time all processors spend
working is T,. Each steal has a 1/P chance of
reducing the span by 1. Thus, the expected cost
of all steals is O(PT,). Since there are P
processors, the expected time is

(T + OPTL)/P=T;/P+0O(T,) . =

© 2008-2024 by the FastCode organization

What Do These Bounds Mean?

Theorem [BL94]. OpenCilk’s randomized work-
stealing scheduler achieves expected running time

Tp=T,/P+ O(T,)
on P processors.

Time workers
spend working.

Time workers
spend stealing.

If the program achieves linear speedup, then
workers spend most of their time working.

© 2008-2024 by the FastCode organization

Scalability vs. Speedup

Ideally, parallelization should make a serial code run P

times faster on P processors.

Serial matrix multiply

Fory (WAted "=,0; isXion ;% +1)
for (int k = @; k < n; ++k)
for (int j = @; j < n; ++j)

GRS =" AL EK] S SB LLaT
[11[3] += A[1][k] [][J]V

Cilk matrix multiply

cillk- ferm(Mt 1 -=%05n %< n'; &%)
for (int k = @; k < n; ++k)
e £ B g R i RS S R TR L)

C[i][]j] += A[i][k] * B[k][3il;
[11[3] += A[1][k] [][J]V

© 2008-2024 by the FastCode organization

Running time Ts.

With sufficient
parallelism, running
time T, = T,/P.

Goal: T, = T¢/P,
meaning that T = T,.

Work Efficiency

Consider a Cilk program, and define:
T, — work of the Cilk program
-~ — span of the Cilk program

s — work of an analogous serial code

To achieve linear speedup on P processors

over its serial analogue —i.e., Tp = Tg/P —
the parallel program must exhibit:
» Ample parallelism: T,/T, > P.

e High work efficiency: T¢/T;~= 1.

© 2008-2024 by the FastCode organization

The Work-First Principle

To optimize the execution of programs with
sufficient parallelism, the implementation of
OpenCilk follows the work-first principle:

a A

Optimize for the ordinary serial
execution, at the expense of some
additional computation in steals.

(& /

© 2008-2024 by the FastCode organization

OpenCilk Platform

int64 t fib(int64 t n) {
if (n < 2)
return n;
inted4 t x, y;
cilk scope {
x = cilk _spawn fib(n-1);

y = fib(n-2);
}
return x + y;
}
Cllk source OpenCilk runtime-
Optimizes the work 5 c ™ system library
penCi | I
of the program. compller linker I|bopenC|Ik o 7
J Manages logic
Blnary
and structures
for stealing.
Program —>® @@
input

Parallel

performance

© 2008-2024 by the FastCode organization

Version 6: Parallel Loops

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Parallelizing the i loop yields a speedup of almost 18x

on 18 cores!

- Disclaimer: It’s rarely this easy to parallelize code effectively.
Most code requires far more creativity to achieve a good speedup.

Let’s try this on

SpeedCode!

© 2008-2024 by the FastCode organization

Version 6: Parallel Loops

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Parallelizing the i loop yields a speedup of almost 18x
on 18 cores!

- Disclaimer: It’s rarely this easy to parallelize code effectively.
Most code requires far more creativity to achieve a good speedup.

Why are we still getting barely 5% of peak?

© 2008-2024 by the FastCode organization

Hardware Caches, Revisited

IDEA: Restructure the computation to reuse data in the
cache as much as possible.

« Cache misses are slow, and cache hits are fast.

« Try to make the most of the cache by reusing the
data that’s already there.

memory
processor . cache
—
O ==
M/B}_H—B—H
cache lines

© 2008-2024 by the FastCode organization

Data Reuse: Loops

How many memory accesses must the looping code
perform to fully compute 1 row of C?

*« 4096 * 1 = 4096 writes to C,

* 4096 * 1 = 4096 reads from A, and

* 4096 * 4096 = 16,777,216 reads from B, which is
* 16,785,408 memory accesses total.

© 2008-2024 by the FastCode organization

Data Reuse: Blocks

How about to compute a 64 x 64 block of C?
« 64 - 64 = 4096 writes to C,

* 64 - 4096 = 262,144 reads from A, and

*« 4096 - 64 = 262,144 reads from B, or

- 528,384 memory accesses total.

= | .

© 2008-2024 by the FastCode organization

ellk fertGints 1 =¢ef vih", n; ‘dh+=, s%
@i e " FO R Y G jlie /=" 0L Y i o< Nl Jher=+"s)
OGNS OER k2SN i FRmE=4s)
fond (IRt 1= 0g 11} <ulS5o++34)
for (int kl = 0; kl < s; ++kl)
for (int jl = 0; jl < s; ++jl)
C[ih+il][jh+j1l] += A[ih+il][kh+k1l] * B[kh+k1l][jh+j1];

4

© 2008-2024 by the FastCode organization 44

Tiled Matrix Multiplication

¢Llk for(Hints in =485 ih™<e, n; i =, s%
@i Tl TorY Gl =" Y s N ” Ther='s
EORM GBI IaY=1 'OE =Sy K FEE=4s %)
for (int il = 9; il < s; ++il)
for (int k1l = @; kl < s; ++kl)
for (int jl = @; jl < s; ++jl)
C[ih+il][jh+j1] += A[ih+il][kh+k

Tuning parameter

How do we find the

right value of s?
Experiment!

<«<S—>
'T‘ A
S
7
N
\ 4
< N >

© 2008-2024 by the FastCode organization

4 6.74

8 2.76
16 2.49
32 1.74
64 2.33
128 2.13

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
+ tiling 1.79 1.70 11,772 76.782 9.184
Cache L1-d cache Last-level cache
Implementation references X 106 misses X 106 misses X 106
Parallel loops 104,090 17,220 8,600
+ tiling 64,690 11,777 416

The tiled implementation performs about 40% fewer
cache references and 95% fewer last-level cache misses.

© 2008-2024 by the FastCode organization 46

Multicore Cache Hierarchy

© 2008-2024 by the FastCode organization

DRAM| DRAM| DRAM
A LIy DAy IS
Memory Net- — -]
Controller | |
LLC (L3) SIOEN®.
. | Latency
L2 L2 L2 (ns)
Main 60 GB 50
ARINVRARERINE AR LLC 25MB 24 -
data | inst| \data] | inst data | inst
L2 256 KB 8 4
L1-d 32KB 8 y)
L1-i 32 KB 8 2
Processor chip 64-byte cache lines

Tiling for a Two-Level Cache

< n

e TWoO tuning
parameters, s and t.

e Multidimensional

n tuning optimization

cannot be done with

binary search.

© 2008-2024 by the FastCode organization

Tiling for a Two-Level Cache

< n

¢ilk™ fort (ints ih =#eE dih ", ;" i r=, s%
@i Tl ForY (Gnise i /= ""0 Y 5 e Mk~ TheF="5y
EORMCGINERNKII=1 ORI =S Ty K FE=4s %)
for (int im = @; im < s; im += t)
Lo *GLNE M A=A0] ™ j s<hsy, wllg -+ it)
for (int km = @; km < s; km += t)
e | e g] P IO i Lo s SR L))
for (int k1l = ©@; kl < t; ++kl)
N Tom 1Gint™ 1% =" Qg% < 5 FL i)
Cl[ih+im+il][jh+jm+j1] +=
A[ih+im+il][kh+km+k1l] * B[kh+km+kl][jh+jm+jl];

4

© 2008-2024 by the FastCode organization

D&C Matrix Multiplication

For matrix multiplication, a recursive, parallel, divide-and-
conquer algorithm uses caches almost optimally.

r N -) r 3
COO CO] AOO AO] BOO BO]

C]O CH A]O AH B]O BH

| ~ . J . J

IDEA: Divide the matrices into (n/2)x(n/2) submatrices.

© 2008-2024 by the FastCode organization

D&C Matrix Multiplication

For matrix multiplication, a recursive, parallel, divide-and-
conquer algorithm uses caches almost optimally.

-
COO

Cio

.

Cor

CH

\

S

i AOOBOO

L A]OBOO

AOOBOl)

A1oBor

(BOO BO])
L B]O BH)
i AOlBlO A01BH\

L AHB]O AHBH/

1. COmpUte COO + = AOOBOO; CO] + = AOOBO]; C]O +=
Ai0Boo; and C,; += A,By; recursively in parallel.

2. CompUte COO + = AO]B]O; CO] + = AO]B]]; C]O + =
A.1Bio; and C,; += A,,B;, recursively in parallel.

© 2008-2024 by the FastCode organization

Recursive Parallel Matrix Multiply

void mm_dac(double *restrict C, int n_C,
double *restrict A, int n_A,
double *restrict B, int n_B,
it Arm)
1R L/ T =TI B
assert((n & (-n)) == n);
S Ch, <N THRESHOLED?) . 1
mm_base(C, n.C, A, n_A, B, n_B
} else {
#define X(M,row,col) (
cilk scope {

The named child
function may execute
in parallel with the
parent caller.

n_ ## M) + col)*(n/2))

cilk _spawn®™mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n B, n/2);
cilk _spawn mm_dac(X(C,0,1), n C, X(A,0,0), n_A, X(B,0,1), n B, n/2);
cilk _spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n B, n/2);
e1 Tk “shawh@mmgda c OCCCHIS N, T C XA, 156 en A% X(BS8k19 N BS Y n/2)%

cilk scope€
cilk _spawn mm_dac(X
cilk _spawn mm_dac(X(C,0,1),
cilk _spawn mm_dac(X(C,1,0),
cilk _spawn mm_dac(X(C,1,1),
L

Control cannot exit
this scope until all
spawned children
have returned.

© 2008-2024 by the FastCode organization

Recursive Parallel Matrix Multiply

void mm_dac(double *restrict C, int n
double *restrict A, int n
double *restrict B, int n_B,
it Arm)

1R L/ T =TI B

assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n.C, A, n.A, B, n B, n);
} else {

Do 4 subproblems
in parallel...

cilk scope {

cilk _spawn mm_dac(X(C,0,0), n C, X(A,0,0), n_A, X(B,0,0), n B, n/2);
cilk _spawn mm_dac(X(C,0,1), n C, X(A,0,0), n_A, X(B,0,1), n B, n/2);
cilk spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n B, n/2);
cilk spawn mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n B, n/2);

}

cilk scope {

cilk spawn mm_dac(X(C,0,0), n C, X(A,0,1), n_A, X(B,1,0), n B, n/2);
cilk _spawn mm_dac(X(C,0,1), n C, X(A,0,1), n_A, X(B,1,1), n B, n/2);
cilk _spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n A, X(B,1,0), n B, n/2);
cilk _spawn mm_dac(X(C,1,1), n C, X

¥ g...and when they’re
kdone, do the other 4.

© 2008-2024 by the FastCode organization

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

Cache Cache L1-d cache

Implementation references X 106 references X 106 misses X 106

Parallel loops 104,090 17,220 8,600

+ tiling 64,690 11,777 416

Parallel divide-and-conquer 58,230 9,407 64

© 2008-2024 by the FastCode organization 54

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

Challenge: Performance-engineer
this algorithm on SpeedCode!

© 2008-2024 by the FastCode organization

55

Vector Hardware

Modern microprocessors incorporate vector hardware
to process data in single-instruction stream, multiple-

data stream (SIMD) fashion.

Memory a/ Parallel vector lanes operate

{

synchronously on the words
In a vector register.

)
T o Vector Load
c
8 ‘G A A
) CIC) 4 Lane 1 4 Lane 2 Lane 3
£ S Each vector re ister\
O T _g
- holds multiple
O wn
S words of data.
el o]
- C V‘V
é’ o] Word 1 Word 2 Word 3

Vector Registers

© 2008-2024 by the FastCode organization

Compiler Vectorization

Clang/LLVM uses vector instructions automatically
when compiling at optimization level -02 or higher.

Clang/LLVM can be induced to produce a
vectorization report as follows:

$ clang -03 -std=c99 mm.c -o mm -Rpass=vector
mm.c:42:7: remark: vectorized loop (vectorization width: 2,
interleaved count: 2) [-Rpass=loop-vectorize]

for (int j =0; j < n; ++j) {

Many machines don’t support the newest set of vector
instructions, however, so the compiler uses vector
instructions conservatively by default.

© 2008-2024 by the FastCode organization

Version 8: Compiler Vectorization

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

Using the flag -march=native nearly doubles the
program’s performance!

Can we be smarter than the compiler?

© 2008-2024 by the FastCode organization

AVX Intrinsic Instructions

Intel provides C-style functions, called /ntrinsic
/nstructions, that provide direct access to hardware vector
operations:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

(intel Intrinsics Guide The Intel Intrinsics Guide is an interactive reference tool for Intel intrinsic instructions, which are C*
style functions that provide access to many Intel instructions - including Intel® SSE, AVX, AVX-

Technologies 512, and more - without the need to write assembly code.

MMX
SSE ?
SSE2
I - SSE3 I__m256i _mm256_abs_epilé (__m2561i a)
= 222531 B __n2561 _mm256_abs_epi32 (__m256i a)
BETE N __m256i _mm256_abs_epi8 (__m256i a)
o Avx B__m256i _mm256_add_epilé (__m256i a, __m256i b)
I o Aaxz B__n256i _nm256_add_epi32 (__m256i a, __m256i b)
PED N __m256i _mm256_add_epié4 (__m256i a, __m256i b)
I AVX-512 I__m256i _mm256_add_epi8 (__m256i a, __m256i b)
KNC B __m256d _mm256_add_pd (__m256d a, __m256d b)
N svML B __n256 _mm256_add_ps (__m256 a, __m256 b)
Other N __m256i _mm256_adds_epilé (__m256i a, __m256i b)
_ N __n256i _mm256_adds_epi8 (__m256i a, __m256i b)
oo nTargeteg 2561 _nn256_adds_epu16 (__n256i a, __n256i b)

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Plus More Optimizations

We can apply several more insights and performance-
engineering tricks to make this code run faster,
including:

 Preprocessing

- Matrix transposition

- Data layout

- Memory-management optimizations

- A clever algorithm for the base case that manages vector
registers and instructions explicitly

© 2008-2024 by the FastCode organization

Plus Performance Engineering

Think, code
‘ pﬁ‘ N ’W”.

_to test and measure many
dlfferent implementations

© 2008-2024 by the FastCode organization

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646
8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486
9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

© 2008-2024 by the FastCode organization

62

Version 10: Final Reckoning

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646
8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486
9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677
10 Intel MKL 0.41 0.97 51,497 335.217 40.098

Our Version 9 is competitive with Intel’s professionally

engineered Math Kernel Library!

© 2008-2024 by the FastCode organization

Performance Engineering

 You won’t generally
see the magnitude
of performance
Improvement we
obtained for matrix
multiplication.

Galopagos
Tortoise
0.5 k/h

© 2008-2024 by the FastCode organization

Performance Engineering

e You won't generally Escape
see the magnitude Velocity
of performance 11 k/s
Improvement we
obtained for matrix
multiplication.

Galopagos
Tortoise
0.5 k/h

© 2008-2024 by the FastCode organization

Performance Engineer i1(

e You won't generally Escape
see the magnitude Velocity
of performance 11 k/s
Improvement we
obtained for matrix
multiplication.

e But 6.106 will teach
you how to print
the currency of
performance all by
yourself.

N R\

Galopagos
Tortoise
0.5 k/h

© 2008-2024 by the FastCode organization

PER ORDER OF FASTCODE

67

