
© 2008–2024 by the FastCode organization 1

NUWEST
Jan. 18, 2024

© 2008–2024 by the FastCode organization 1

PER ORDER OF 6.172

SPEED
LIMIT∞

PER ORDER OF FASTCODEDEMO
Writing Fast Task-
Parallel Code Using
OpenCilk
Tao B. Schardl

Based on slides and materials
from MIT 6.106 lecturers.

© 2008–2024 by the FastCode organization 2

Teaching Software Performance Engineering

MIT 6.106: Software Performance Engineering
• Upper-level undergraduate

1-semester class
• ~140 students per year
• Taught using C and OpenCilk
• Prerequisites: algorithms,

programming, computer architecture

SPEED
LIMIT

PER ORDER OF 6.106
∞

• Bentley rules
• Bit hacks
• Assembly language and

computer architecture
• Cache-efficient algorithms

• Measurement and timing
• Task parallelism
• Nondeterministic

parallel programming
• And more!

Lecture topics include:

© 2008–2024 by the FastCode organization 3

6.106 Projects

In 6.106, students primarily work on 4
open-ended projects.
• Students are given a correct, but

slow, C program to solve a problem.
• Students are charged with making

that program run as fast as possible
on a shared-memory multicore.

• Some projects involve only serial
performance optimizations.

• Others involve parallel
programming using OpenCilk.

Example project:
Simulation and
rendering of

colliding spheres

© 2008–2024 by the FastCode organization 4

OpenCilk Platform

Parallel
performance

OpenCilk
compiler, linker

int64_t fib(int64_t n) {
 if (n < 2)
 return n;
 int64_t x, y;
 cilk_scope {
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 }
 return x + y;
} Cilk source

P⋯PP

Binary

Program
input

libopencilk.so

OpenCilk runtime-
system library

© 2008–2024 by the FastCode organization 5

Parallel Testing

Potential race
bug report

OpenCilk compiler
with Cilksan

int64_t fib(int64_t n) {
 if (n < 2)
 return n;
 int64_t x, y;
 cilk_scope {
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 }
 return (x + y);
} Cilk source

Parallel
regression

tests
P

Binary

Cilksan finds and
localizes race bugs.
• If an ostensibly

deterministic Cilk
program could
possibly behave
nondeterministically
on a given input,
Cilksan guarantees to
report and localize
the offending race.

• Cilksan employs a
regression-test
methodology, where
the programmer
provides test inputs.

© 2008–2024 by the FastCode organization 6

Scalability Analysis

Scalability
report

Cilkscale analyzes
how well your
program will scale
to larger machines.

P⋯PPProgram
input

OpenCilk compiler
with Cilkscale

int64_t fib(int64_t n) {
 if (n < 2)
 return n;
 int64_t x, y;
 cilk_scope {
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 }
 return (x + y);
} Cilk source

Binary

© 2008–2024 by the FastCode organization 7

PER ORDER OF 6.172

SPEED
LIMIT∞

PER ORDER OF FASTCODE

LECTURE 1 CASE STUDY
MATRIX MULTIPLICATION

© 2008–2024 by the FastCode organization 8

Square-Matrix Multiplication

c11 c12 ⋯ c1n
c21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮
cn1 cn2 ⋯ cnn

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

b11 b12 ⋯ b1n
b21 b22 ⋯ b2n

⋮ ⋮ ⋱ ⋮
bn1 bn2 ⋯ bnn

= ∙

C A B

cij= å
k = 1

n

aik bkj

Assume for simplicity that n = 2k.

© 2008–2024 by the FastCode organization 9

AWS c4.8xlarge Machine Specs
Feature Specification
Microarchitecture Haswell (Intel Xeon E5-2666 v3)
Clock frequency 2.9 GHz
Processor chips 2
Processing cores 9 per processor chip
Hyperthreading 2 way

Floating-point unit 8 double-precision operations, including
fused-multiply-add, per core per cycle

Cache-line size 64 B
L1-icache 32 KB private 8-way set associative
L1-dcache 32 KB private 8-way set associative
L2-cache 256 KB private 8-way set associative
L3-cache (LLC) 25 MB shared 20-way set associative
DRAM 60 GB

Peak = (2.9 × 109) × 2 × 9 × 16 = 836 GFLOPS

© 2008–2024 by the FastCode organization 10

Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
B = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
C = [[0 for row in xrange(n)]
 for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time:
≈ 6 microseconds?
≈ 6 milliseconds?
≈ 6 seconds?
≈ 6 hours?
≈ 6 days?

© 2008–2024 by the FastCode organization 11

Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
B = [[random.random()
 for row in xrange(n)]
 for col in xrange(n)]
C = [[0 for row in xrange(n)]
 for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time:
= 21042 seconds
≈ 6 hours

Is this fast?

How fast can we
make this code
through software
performance
engineering?

© 2008–2024 by the FastCode organization 12

After Optimizations

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

10 Intel MKL 0.41 0.97 51,497 335.217 40.098

Our Version 9 is competitive with Intel’s professionally
engineered Math Kernel Library!

© 2008–2024 by the FastCode organization 13

PER ORDER OF 6.172

SPEED
LIMIT∞

PER ORDER OF FASTCODE

OPTIMIZING MATRIX
MULTIPLICATION USING

OPENCILK

© 2008–2024 by the FastCode organization 14

Follow Along Using SpeedCode
SpeedCode provides an online platform to practice
programming that focuses on software performance
engineering.
• SpeedCode problems are small programming exercises

that require performance engineering to solve.
• SpeedCode provides users with an environment that

enables software performance engineering, including
• Access to performance-engineering tools, and
• Support for parallel programming using OpenCilk.

Available from http://speedcode.org/
Today, we’ll use the “Matrix multiplication” problem.

SpeedCode’s development is
being led by Dr. Tim Kaler.

http://speedcode.org/

© 2008–2024 by the FastCode organization 15

Our Starting Point
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

#define n 4096
double A[n][n];
double B[n][n];
double C[n][n];

float tdiff(struct timeval *start,
struct timeval *end) {

return (end->tv_sec-start->tv_sec) +
1e-6*(end->tv_usec-start->tv_usec);

}

int main(int argc, const char *argv[]) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
 A[i][j] = (double)rand() / (double)RAND_MAX;
 B[i][j] = (double)rand() / (double)RAND_MAX;

C[i][j] = 0;
}

}

 struct timeval start, end;
 gettimeofday(&start, NULL);

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

 gettimeofday(&end, NULL);
printf("%0.6f\n", tdiff(&start, &end));

 return 0;
}

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

Using the Clang/LLVM 5.0
compiler
Running time = 1,156 seconds
 ≈ 19 minutes,
or about 2× faster than Java and
about 18× faster than Python.

© 2008–2024 by the FastCode organization 16

Loop Order

C[i][j] += A[i][k] * B[k][j];
}

}
}

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

We can change the order of the loops in this program
without affecting its correctness.

© 2008–2024 by the FastCode organization 17

Loop Order

C[i][j] += A[i][k] * B[k][j];
}

}
}

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

Does the order of loops matter for performance?

We can change the order of the loops in this program
without affecting its correctness.

© 2008–2024 by the FastCode organization 18

Performance of Different Loop Orders

Loop order affects
running time by a
factor of 18!

What’s going on?

Loop order
(outer to inner)

Running
time (s)

i, j, k 1155.77
i, k, j 177.68
j, i, k 1080.61
j, k, i 3056.63
k, i, j 179.21
k, j, i 3032.82

© 2008–2024 by the FastCode organization 19

Hardware Caches

P

cache

memory

BM/B
cache lines

processor

Each processor reads and writes main memory in
contiguous blocks, called cache lines.
∙ Previously accessed cache lines are stored in a smaller

memory, called a cache, that sits near the processor.
∙ Cache hits — accesses to data in cache — are fast.
∙ Cache misses — accesses to data not in cache — are

slow.

© 2008–2024 by the FastCode organization 20

Performance of Different Orders

Loop order
(outer to inner)

Running
time (s)

Last-level-cache
miss rate

i, j, k 1155.77 7.7%
i, k, j 177.68 1.0%
j, i, k 1080.61 8.6%
j, k, i 3056.63 15.4%
k, i, j 179.21 1.0%
k, j, i 3032.82 15.4%

$ valgrind --tool=cachegrind ./mm

We can measure the effect of different access patterns
using the Cachegrind cache simulator:

© 2008–2024 by the FastCode organization 21

Version 4: Interchange Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

© 2008–2024 by the FastCode organization 22

Compiler Optimization

Clang provides a collection of optimization switches.
You can specify a switch to the compiler to ask it to
optimize.

Opt. level Meaning Time (s)
-O0 Do not optimize 177.54
-O1 Optimize 66.24
-O2 Optimize even more 54.63
-O3 Optimize yet more 55.58

Clang also supports optimization levels for special
purposes, such as –Os, which aims to limit code size,
and –Og, for debugging purposes.

© 2008–2024 by the FastCode organization 23

Version 5: Optimization Flags

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, we can
achieve 0.3% of the peak performance of the machine.

Let’s try this on
SpeedCode!

© 2008–2024 by the FastCode organization 24

Version 5: Optimization Flags

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, we can
achieve 0.3% of the peak performance of the machine.

Where can we get more performance?

© 2008–2024 by the FastCode organization 25

Multicore Parallelism

We’re running on just 1 of the 18 parallel-processing
cores on this system. Let’s use them all!

Intel Haswell E5:
9 cores per chip

The AWS test
machine has 2 of
these chips.

© 2008–2024 by the FastCode organization 26

for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 for (int j = 0; j < n; ++j)
 C[i][j] += A[i][k] * B[k][j];

Parallel Loops
Let’s use OpenCilk to parallelize this simple code.

cilk_for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Allows all loop
iterations to

execute in parallel.

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Almost 18x speedup on 18 cores!

© 2008–2024 by the FastCode organization 27

OpenCilk Scheduling

● Cilk allows the
programmer to express
logical parallelism in an
application, in a
processor-oblivious
fashion.

● The Cilk scheduler maps
the executing program
onto the processor cores
dynamically at runtime.

● Cilk’s work-stealing
scheduling algorithm is
provably efficient.

cilk_for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

…

Memory I/O

$

P

$

P

$

P

Network

© 2008–2024 by the FastCode organization 28

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

P

spawned
called
called
called

P

spawned

PP

called
spawned

called

spawned
called

Call!

Work Stealing

© 2008–2024 by the FastCode organization 29

P

spawned
called
called
called

spawned

P

spawnspawned

PP

called
spawned

called

spawned
called

Spawn!

Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

called
spawned

Spawn!Call!

© 2008–2024 by the FastCode organization 30

P

spawned
called
called
called

spawned

P

spawned

PP

called
spawned

called
called

spawned
called

spawned
Steal!

Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008–2024 by the FastCode organization 31

P

spawned
called
called
called

spawned

P

spawned

PP

called
spawned

called
called

spawned
called

spawned

Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008–2024 by the FastCode organization 32

Work-Stealing Bounds

Theorem [BL94]. OpenCilk’s randomized work-
stealing scheduler achieves expected running time

TP ≈ T1/P + O(T∞)
on P processors.

The performance of a Cilk program depends on
two measures:
• Work , T1 — total executed instructions
• Span, T∞ — length of a longest path of serial

dependencies

TP is within a constant
factor of optimal.

© 2008–2024 by the FastCode organization 33

Pseudoproof of Work-Stealing Bounds

Theorem [BL94]. OpenCilk’s randomized work-
stealing scheduler achieves expected running time

TP ≈ T1/P + O(T∞)
on P processors.

Pseudoproof. A processor is either working or
stealing. The total time all processors spend
working is T1. Each steal has a 1/P chance of
reducing the span by 1. Thus, the expected cost
of all steals is O(PT∞). Since there are P
processors, the expected time is

 (T1 + O(PT∞))/P = T1/P + O(T∞) . ■

© 2008–2024 by the FastCode organization 34

What Do These Bounds Mean?

Theorem [BL94]. OpenCilk’s randomized work-
stealing scheduler achieves expected running time

TP ≈ T1/P + O(T∞)
on P processors.

If the program achieves linear speedup, then
workers spend most of their time working.

Time workers
spend working.

Time workers
spend stealing.

© 2008–2024 by the FastCode organization 35

Scalability vs. Speedup

cilk_for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < n; ++i)
 for (int k = 0; k < n; ++k)
 for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Serial matrix multiply

Cilk matrix multiply

Ideally, parallelization should make a serial code run P
times faster on P processors.

Running time TS.

With sufficient
parallelism, running
time TP ≈ T1/P.

Goal: TP ≈ TS/P,
meaning that TS ≈ T1.

© 2008–2024 by the FastCode organization 36

Work Efficiency

Consider a Cilk program, and define:
T1 — work of the Cilk program
T∞ — span of the Cilk program
TS — work of an analogous serial code

To achieve linear speedup on P processors
over its serial analogue — i.e., TP ≈ TS/P —
the parallel program must exhibit:
• Ample parallelism: T1/T∞ ≫ P.
• High work efficiency: TS/T1 ≈ 1.

© 2008–2024 by the FastCode organization 37

The Work-First Principle

To optimize the execution of programs with
sufficient parallelism, the implementation of
OpenCilk follows the work-first principle:

Optimize for the ordinary serial
execution, at the expense of some
additional computation in steals.

© 2008–2024 by the FastCode organization 38

OpenCilk Platform

Parallel
performance

OpenCilk
compiler, linker

int64_t fib(int64_t n) {
 if (n < 2)
 return n;
 int64_t x, y;
 cilk_scope {
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 }
 return x + y;
} Cilk source

P⋯PP

Binary

Program
input

libopencilk.so

OpenCilk runtime-
system libraryOptimizes the work

of the program.

Manages logic
and structures
for stealing.

© 2008–2024 by the FastCode organization 39

Version 6: Parallel Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Parallelizing the i loop yields a speedup of almost 18×
on 18 cores!
• Disclaimer: It’s rarely this easy to parallelize code effectively.

Most code requires far more creativity to achieve a good speedup.

Let’s try this on
SpeedCode!

© 2008–2024 by the FastCode organization 40

Version 6: Parallel Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Parallelizing the i loop yields a speedup of almost 18×
on 18 cores!
• Disclaimer: It’s rarely this easy to parallelize code effectively.

Most code requires far more creativity to achieve a good speedup.

Why are we still getting barely 5% of peak?

© 2008–2024 by the FastCode organization 41

Hardware Caches, Revisited

P

cache

memory

BM/B
cache lines

processor

IDEA: Restructure the computation to reuse data in the
cache as much as possible.
• Cache misses are slow, and cache hits are fast.
• Try to make the most of the cache by reusing the

data that’s already there.

© 2008–2024 by the FastCode organization 42

Data Reuse: Loops

C BA= x

How many memory accesses must the looping code
perform to fully compute 1 row of C?
• 4096 * 1 = 4096 writes to C,
• 4096 * 1 = 4096 reads from A, and
• 4096 * 4096 = 16,777,216 reads from B, which is
• 16,785,408 memory accesses total.

© 2008–2024 by the FastCode organization 43

Data Reuse: Blocks

C BA= x

How about to compute a 64 × 64 block of C?
• 64 · 64 = 4096 writes to C,
• 64 · 4096 = 262,144 reads from A, and
• 4096 · 64 = 262,144 reads from B, or
• 528,384 memory accesses total.

© 2008–2024 by the FastCode organization 44

Tiled Matrix Multiplication
cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)
for (int il = 0; il < s; ++il)
for (int kl = 0; kl < s; ++kl)
for (int jl = 0; jl < s; ++jl)
C[ih+il][jh+jl] += A[ih+il][kh+kl] * B[kh+kl][jh+jl];

© 2008–2024 by the FastCode organization 45

Tiled Matrix Multiplication

s
s

n

n

cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)
for (int il = 0; il < s; ++il)
for (int kl = 0; kl < s; ++kl)
for (int jl = 0; jl < s; ++jl)
C[ih+il][jh+jl] += A[ih+il][kh+kl] * B[kh+kl][jh+jl];

Tuning parameter
How do we find the

right value of s?
Experiment!

Tile size
Running
time (s)

4 6.74
8 2.76

16 2.49
32 1.74
64 2.33

128 2.13

© 2008–2024 by the FastCode organization 46

Tiling Performance

Implementation
Cache

references × 106
L1-d cache

misses × 106
Last-level cache

misses × 106

Parallel loops 104,090 17,220 8,600
+ tiling 64,690 11,777 416

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

+ tiling 1.79 1.70 11,772 76.782 9.184

The tiled implementation performs about 40% fewer
cache references and 95% fewer last-level cache misses.

© 2008–2024 by the FastCode organization 47

Multicore Cache Hierarchy

Level Size Assoc. Latency
(ns)

Main 60GB 50
LLC 25MB 20 12
L2 256KB 8 4

L1-d 32KB 8 2
L1-i 32KB 8 2

64-byte cache lines

DRAM

Processor chip

L1
data

L1
inst

L1
data

L1
inst

L1
data

L1
inst

L2 L2 L2

LLC (L3)

P P

⋯
P

Memory
Controller

Net-
work

DRAM DRAM

⋯ ⋯ ⋯

© 2008–2024 by the FastCode organization 48

Tiling for a Two-Level Cache

t

s

n

s

n

∙ Two tuning
parameters, s and t.

∙Multidimensional
tuning optimization
cannot be done with
binary search.

t

© 2008–2024 by the FastCode organization 49

Tiling for a Two-Level Cache

t

s

n

s

n

∙ Two tuning
parameters, s and t.

∙Multidimensional
tuning optimization
cannot be done with
binary search.

t

cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)
for (int im = 0; im < s; im += t)

 for (int jm = 0; jm < s; jm += t)
 for (int km = 0; km < s; km += t)
 for (int il = 0; il < t; ++il)
 for (int kl = 0; kl < t; ++kl)
 for (int jl = 0; jl < t; ++jl)
 C[ih+im+il][jh+jm+jl] +=
 A[ih+im+il][kh+km+kl] * B[kh+km+kl][jh+jm+jl];

© 2008–2024 by the FastCode organization 50

D&C Matrix Multiplication
For matrix multiplication, a recursive, parallel, divide-and-
conquer algorithm uses caches almost optimally.

IDEA: Divide the matrices into (n/2)×(n/2) submatrices.

·
A00 A01

A10 A11

B00 B01

B10 B11

C00 C01

C10 C11

=

© 2008–2024 by the FastCode organization 51

D&C Matrix Multiplication
For matrix multiplication, a recursive, parallel, divide-and-
conquer algorithm uses caches almost optimally.

C00 C01

C10 C11

= ·
A00 A01

A10 A11

= +
A00B00 A00B01

A10B00 A10B01

A01B10 A01B11

A11B10 A11B11

B00 B01

B10 B11

1. Compute C00 += A00B00; C01 += A00B01; C10 +=
A10B00; and C11 += A10B01 recursively in parallel.

2. Compute C00 += A01B10; C01 += A01B11; C10 +=
A11B10; and C11 += A11B11 recursively in parallel.

© 2008–2024 by the FastCode organization 52

Recursive Parallel Matrix Multiply
void mm_dac(double *restrict C, int n_C,
 double *restrict A, int n_A,
 double *restrict B, int n_B,
 int n)
{ // C += A * B
 assert((n & (-n)) == n);
 if (n <= THRESHOLD) {
 mm_base(C, n_C, A, n_A, B, n_B, n);
 } else {
#define X(M,row,col) (M + (row*(n_ ## M) + col)*(n/2))
 cilk_scope {
 cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
 }
 cilk_scope {
 cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
} } }

The named child
function may execute
in parallel with the
parent caller.

Control cannot exit
this scope until all
spawned children
have returned.

© 2008–2024 by the FastCode organization 53

Recursive Parallel Matrix Multiply
void mm_dac(double *restrict C, int n_C,
 double *restrict A, int n_A,
 double *restrict B, int n_B,
 int n)
{ // C += A * B
 assert((n & (-n)) == n);
 if (n <= THRESHOLD) {
 mm_base(C, n_C, A, n_A, B, n_B, n);
 } else {
#define X(M,row,col) (M + (row*(n_ ## M) + col)*(n/2))
 cilk_scope {
 cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
 }
 cilk_scope {
 cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
} } } …and when they’re

done, do the other 4.

Do 4 subproblems
in parallel…

© 2008–2024 by the FastCode organization 54

Version 7: Parallel Divide-and-Conquer

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

Implementation
Cache

references × 106
Cache

references × 106
L1-d cache

misses × 106

Parallel loops 104,090 17,220 8,600
+ tiling 64,690 11,777 416
Parallel divide-and-conquer 58,230 9,407 64

© 2008–2024 by the FastCode organization 55

Version 7: Parallel Divide-and-Conquer

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

Challenge: Performance-engineer
this algorithm on SpeedCode!

© 2008–2024 by the FastCode organization 56

Lane 0 Lane 1 Lane 2 Lane 3

Word 0 Word 1 Word 2 Word 3

Vector Hardware

Vector Load/Store Unit

ALU

Vector Registers

In
st

ru
ct

io
n

de
co

de

an
d

se
qu

en
ci

ng

Memory and caches

ALU ALU ALU

Modern microprocessors incorporate vector hardware
to process data in single-instruction stream, multiple-
data stream (SIMD) fashion.

Each vector register
holds multiple
words of data.

Parallel vector lanes operate
synchronously on the words

in a vector register.

© 2008–2024 by the FastCode organization 57

Compiler Vectorization
Clang/LLVM uses vector instructions automatically
when compiling at optimization level -O2 or higher.
Clang/LLVM can be induced to produce a
vectorization report as follows:

$ clang -O3 -std=c99 mm.c -o mm –Rpass=vector
mm.c:42:7: remark: vectorized loop (vectorization width: 2,
interleaved count: 2) [-Rpass=loop-vectorize]

for (int j = 0; j < n; ++j) {
 ^

Many machines don’t support the newest set of vector
instructions, however, so the compiler uses vector
instructions conservatively by default.

© 2008–2024 by the FastCode organization 58

Version 8: Compiler Vectorization

Using the flag –march=native nearly doubles the
program’s performance!

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

Can we be smarter than the compiler?

© 2008–2024 by the FastCode organization 59

AVX Intrinsic Instructions
Intel provides C-style functions, called intrinsic
instructions, that provide direct access to hardware vector
operations:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

© 2008–2024 by the FastCode organization 60

Plus More Optimizations

We can apply several more insights and performance-
engineering tricks to make this code run faster,
including:
• Preprocessing
• Matrix transposition
• Data layout
• Memory-management optimizations
• A clever algorithm for the base case that manages vector

registers and instructions explicitly

© 2008–2024 by the FastCode organization 61

Plus Performance Engineering
Think, code,

run, run, run…

…to test and measure many
different implementations

© 2008–2024 by the FastCode organization 62

Version 9: AVX Intrinsics

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

© 2008–2024 by the FastCode organization 63

Version 10: Final Reckoning

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent
of peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 Parallel divide-and-conquer 1.30 2.35 16,197 105.722 12.646

8 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

9 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

10 Intel MKL 0.41 0.97 51,497 335.217 40.098

Our Version 9 is competitive with Intel’s professionally
engineered Math Kernel Library!

© 2008–2024 by the FastCode organization 64

Performance Engineering
∙ You won’t generally

see the magnitude
of performance
improvement we
obtained for matrix
multiplication.

Galopagos
Tortoise
0.5 k/h

© 2008–2024 by the FastCode organization 65

Performance Engineering

53,292×

∙ You won’t generally
see the magnitude
of performance
improvement we
obtained for matrix
multiplication.

Galopagos
Tortoise
0.5 k/h

Escape
Velocity
11 k/s

© 2008–2024 by the FastCode organization 66

Performance Engineering

53,292×

∙ You won’t generally
see the magnitude
of performance
improvement we
obtained for matrix
multiplication.

∙ But 6.106 will teach
you how to print
the currency of
performance all by
yourself. Galopagos

Tortoise
0.5 k/h

Escape
Velocity
11 k/s

© 2008–2024 by the FastCode organization 67

PER ORDER OF 6.172

SPEED
LIMIT∞

PER ORDER OF FASTCODE

QUESTIONS?

