
Tao B. Schardl
NUWEST
January 18, 2024
Albuquerque, NM

OpenCilk: A Modular and Extensible Software
Infrastructure for Fast Task-Parallel Code

Parallel programming in different languages
Different languages introduce different constructs for parallelism.

1

function saxpy_threads(Z, X, Y, a)
 Tasks.@threads for I in eachindex(Z, Y, X)
 Z[I] = a*X[I] + Y[I]
 end
 Z
end

Example Julia @threads code

Z .= a .* X .+ Y

Example Julia code

Example CUDA.jl code

function saxpy_cuda(Z, a, X, Y)
 i = (blockIdx().x - 1) * blockDim().x + threadIdx().x
 if i <= length(Z)
 Z[i] = a * X[i] + Y[i]
 end
 return nothing
end

View<ForceType *> atomForces(“atomForces”, numberOfAtoms);
View<AtomDataType> data(“data”, size);
Kokkos::parallel_for(numberOfAtoms,
 KOKKOS_LAMBDA(const size_t atomIndex) {
 atomForces(atomIndex) = calculateForce(data);
});

Example Kokkos code

Implicitly parallel
operators Parallel loop of

Julia tasks

Parallel-loop
library routine

GPU kernel

C.update(0)
 .fuse(i0, j0, tile)
 .parallel(tile);

Example Halide code

Parallel scheduling
command

-O3

Traditional compiler design for parallelism
Traditionally, compiler internals assume a sequential, flat-memory machine
and lack a deep understanding of parallelism.

2

Julia LLVM IR LLVM IR EXEClang CodeGenCodeGen,
Linkingjulia>

+ parallel
runtime

ABI

Front-end

Details of a specific parallel runtime
get baked into the intermediate

representation (IR).

Back-end
libjulia.so

Parallel
runtime libraryCompiler extension

to work with a parallel
runtime library

-O3

Problem: Parallel performance
This approach to compiling parallel code is bad for performance.

3

Julia LLVM IR LLVM IR EXEClang CodeGenCodeGen,
Linkingjulia>

+ parallel
runtime

ABI
The resulting

executable can end
up bloated and slow!

libjulia.so

Problem: These runtime details
obfuscate the code, impeding

compiler analysis and optimization.

Task.@spawn 2+2

local task = Base.Threads.Task(() -> 2 + 2)
task.sticky = false
Tasks._spawn_set_thrpool(task, :default)
Tasks.schedule(task)

Pseudo-LLVM IR

Example Julia code

Julia closure,
removed from
parent function

-O3

Problem: Modifying and extending runtimes
Modifying or extending a parallel runtime ABI requires substantial
engineering effort to modify both the compiler and runtime library.

4

Julia LLVM IR LLVM IR EXEClang CodeGenCodeGen,
Linkingjulia>

+ parallel
runtime

ABI
libjulia.so

Problem: The compiler source
code must know the details of

the runtime libraries!

+ CUDA
runtime

ABI

libcuda.so

Consequences:
• It is hard to modify runtimes to make them compose.
• It is hard to add support for new parallel hardware.

Context: In LLVM 14, the
Clang front end is ~1 million
lines of code, substantially
larger than many parallel
runtime libraries.

Previous work: Tapir [SML17]

Previously, we developed Tapir, a compiler intermediate representation
that allows the compiler to understand task parallelism.

5

Tapir adds three instructions to
LLVM IR that encode recursive

fork-join parallelism.

Cilk Tapir Tapir EXEClang* -O3 CodeGen

With only minor changes, LLVM’s
existing optimizations and

analyses work on parallel code.

Tapir/LLVM compiler

[SML17] Schardl, Moses, Leiserson. Tapir: Embedding Fork-Join Parallelism into LLVM’s Intermediate Representation. In PPoPP, 2017.

Compiling with Tapir significantly improves the performance of task-parallel
programs.

OpenCilk system architecture [SL23]

OpenCilk uses LLVM and Tapir to make it easy to modify and extend the
compiler and runtime to different parallel programming platforms.

6

Cilk Tapir Tapir EXE
-O3,
CSI

CodeGen,
Linking

OpenCilk compiler

Clang*

[SL23] Schardl, Lee. OpenCilk: A Modular and Extensible Software Infrastructure for
Fast Task-Parallel Code. PPoPP, 2023.

OpenCilk runtime

Library

Bitcode

Tapir
lowering LLVM

Adds support
for Tapir.

Inserts instrumentation
hooks for tools.

The Tapir-lowering framework
translates Tapir IR to a parallel-runtime

ABI after compiler optimizations.

OpenCilk supports encoding parallel-runtime
ABI details outside of the compiler as LLVM
bitcode, a binary representation of LLVM IR.

Collaborative work with
Prof. I-Ting Angelina Lee.

Adding new parallel-runtime backends
We extended OpenCilk to compile Cilk programs to different parallel
runtime systems, including Cilk Plus, OpenMP tasks, and oneTBB.

7

Tapir-O3

OpenCilk
compiler

OpenCilk ABI

Tapir lowering
LLVM

Tapir target

OpenCilk
Cilk Plus
OpenMP
Lambda

OpenMP ABI

oneTBB ABI

LLVM

LLVM

LLVM

Runtime
bitcodes

Runtime
back end

Approx. new
lines of code

OpenCilk 1,680
Cilk Plus 1,900
OpenMP tasks 850
oneTBB 780

Each new parallel runtime
requires fewer than 2000

new lines of code.A generic Tapir target for
parallel CPU runtimes.

…

Performance of OpenCilk
OpenCilk produces fast code.

8

Better

OpenCilk achieves
high work efficiency.

OpenCilk scales well
on parallel processors.

OpenCilk’s design using a bitcode ABI makes it easy to engineer the
runtime system to improve performance.

Comparable to the original
Tapir/LLVM compiler.

Integrating Julia and OpenCilk
Recently, we used these latest developments in OpenCilk to integrate
OpenCilk and Julia.

9

Tapir-O3

OpenCilk compiler Tapir lowering

LLVMOpenCilk
Lambda

LLVM

CodeGen,
Linking

CodeGen,
Linking

Cilk TapirClang

Julia julia> libjulia.so

OpenCilk
runtime

Use the Lambda Tapir target and 50 lines of Julia
code to lower Tapir to the Julia runtime system.

Collaborative work
with Valentin Churavy

Add Tapir.@spawn and
Tapir.@sync to Julia.

EXE

EXE

OpenCilk compiles and
optimizes parallel Julia code.

No Julia-specific
changes were
needed within

OpenCilk!

Performance and portability with Kitsune
Kitsune is a parallel-aware compiler toolchain, built using OpenCilk, to
compile and optimize Kokkos and other DOE software.

10
Collaborative work with Dr. Patrick
McCormick and his team at LANL

Tapir-O3

OpenCilk compiler Tapir lowering

LLVMOpenCilk
CUDA

LLVM

CodeGen,
Linking

CodeGen,
Linking

C++ TapirClang

libkitrt.so

OpenCilk
runtime

EXE

EXE

We are developing new Tapir targets, including
for GPUs, to provide performance portability.

Less than 600 lines of new
code to intercept Kokkos, e.g.,
Kokkos::parallel_for.

Clang
Kokkos,
Kitsune
forall Optimize parallel code in a

vendor-agnostic fashion.

Performance results, NVIDIA H100, CUDA 12.2
Kitsune’s vendor-agnostic, parallel-aware compilation strategy improves the
performance of several benchmark programs on GPUs.

11

Better

0
5
10
15
20
25
30
35
40
45

kits
un
e

ko
kko
s+
kits
un
e

cu
da
+n
vcc

ko
kko
s+
nv
cc

R
un

tim
e

(s
)

Raytracer

0
0.5
1

1.5
2

2.5
3

3.5
4

kits
un
e

ko
kko
s+
nv
cc

R
un

tim
e

(s
)

srad

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

kits
un
e

ko
kko
s+
nv
cc

R
un

tim
e

(s
)

saxpy

4.2x faster 1.17x faster 2.7x faster 1.06x faster

0
5
10
15
20
25
30
35

kits
un
e

ko
kko
s+
kits
un
e

ko
kko
s+
nv
cc

R
un

tim
e

(s
)

Euler3D

Chi: A flexible Tapir target for accelerators
We recently prototyped a new Tapir target, called Chi, that aims to
generalize GPU Tapir targets to move runtime details out of the compiler.
• Chi borrows many ideas and insights from Kitsune’s GPU targets.
• Chi provides hooks and callbacks to specify ABI details of a language or

GPU runtime ABI.

12

Tapir-O3

OpenCilk compiler Tapir lowering
LLVMLambda

Chi LLVM

…

CPU runtime ABI

GPU runtime ABI

Tapir-lowering
callbacks

Collaborative work
with Valentin Churavy

Callbacks are needed to
handle the diverse ways

GPU kernels are encoded
and launched.

Interfaces directly to
LLVM’s internal APIs.

From Julia to OpenCilk to GPUs
With Chi, we were able to rapidly prototype a new Julia parallel-loop
construct that compiles to a GPU kernel using OpenCilk.

13

function saxpy(Z, X, Y, a)
 Tapir.foreach(eachindex(Z, Y, X)) do I
 @inbounds Z[I] = a*X[I] + Y[I]
 end
 Z

end

Julia
Mechanism Running time (us)

Tapir, Chi 75.97
GPUArrays 71.41
CUDA.jl 95.39

New parallel-loop function that
compiles to Tapir and eventually

lowers to a GPU kernel.

Using Chi to support Julia’s CUDA offloading required:
• ~50 lines of C++ in callbacks.
• ~150 lines of Julia code, to process and launch the

GPU kernel within the Julia runtime.

Preliminary results using CUDA

Performance on par
with other CUDA-

programming
solutions in Julia.

For More About OpenCilk
Check out OpenCilk yourself!
• Website: https://www.opencilk.org
• GitHub: https://github.com/OpenCilk/

Use SpeedCode to try out OpenCilk online: http://speedcode.org

Special thanks to the OpenCilk team — Tim Kaler, Alexandros-Stavros
Iliopoulos, John Carr, Dorothy Curtis, Bruce Hoppe, and Charles E.
Leiserson — and everyone who has contributed to and supported
OpenCilk.

14

https://www.opencilk.org/
https://github.com/OpenCilk/
http://speedcode.org/

Code-Along Preview

15

Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

C 971.185 1.00 1 0.142 0.003
+ interchange loops 185.530 5.23 5 0.741 0.016
+ optimization flags 52.091 3.56 19 2.638 0.057
Parallel loops 1.418 36.74 685 96.925 2.103
Parallel divide-and-conquer 0.547 2.59 1,775 251.260 5.453
+ compiler vectorization, AVX2 0.245 2.23 3,964 560.975 12.174
+ compiler vectorization, AVX512 0.178 1.38 5.456 772.129 16.756
+ hand vectorization 0.052 3.42 18,677 2,643.057 57.358
oneMKL with OpenMP 0.056 0.93 17,343 2,454.267 53.261

Come to the code-along, Writing Fast Task-Parallel Code Using OpenCilk,
where we’ll use OpenCilk to do some software performance engineering of
a C/C++ matrix-multiplication code.

Problem: 4k-by-4k matrix multiply Machine: AWS c5.metal, Intel Xeon Platinum 8275CL

